网站首页 > 文章精选 正文
在工业自动化领域,机器视觉对位技术是实现精密制造的核心环节,其本质是通过光学成像与算法解析,精确计算目标物体的位置和姿态偏差,并引导执行机构完成校正。根据应用场景的精度需求、物体尺寸和环境约束,业界发展出多种对位模型,主要可分为自对位模型和映射对位模型两大类。
自对位模型:单相机高效定位
自对位模型通过机械定位确保目标物体位置固定,仅需在对象端(待调整物体)设置相机进行位置纠偏。其核心流程包括:示教模板位置→实时计算偏移量→机械纠偏→完成贴合。根据标记点(Mark点)数量与布局,主要分为以下类型:
1. 单Mark点模型
通过识别单个Mark点(通常为产品中心)计算平移偏移量,适用于小尺寸刚性物体或低精度场景,如小家电组装。
2. 双Mark点模型
识别物体长边或对角线上的两个Mark点,通过中点计算平移,连线计算旋转角度,精度提升至±0.08mm。适用于角度敏感的电路板贴合。
3. 四Mark点模型
以矩形四角为Mark点,通过对角线交点和角度平均值计算位姿,精度达±0.05mm。常见于高精度要求的电子元件装配。
4. 多相机扩展模型
针对大尺寸物体(如车载屏幕),采用双相机或四相机协同,通过虚拟拼接实现全域定位,保持±0.05mm精度。丝印领域专用的抓边模型(四/五相机)甚至可达±0.02mm,通过测量四条边距实现直角/弧角屏幕的精密对位。
表:常见自对位模型性能对比
映射对位模型:动态坐标转换
当目标端与对象端位置均不固定时,需采用映射对位模型。该模型通过多相机建立空间映射关系,将目标坐标转换至对象坐标系:
单目双Mark映射:目标端与对象端各设一个相机,通过Mark点角度差计算偏移,精度±0.05mm,适用于FPC与钢片贴合。
多Mark模型:如八Mark映射(四相机方案),通过四个角点建立映射关系,支持>200mm大尺寸产品(如汽车仪表盘),精度±0.05mm。
机器视觉对位技术已渗透至高端制造全链路:在半导体领域,双CCD与UVW平台组合实现微米级对准;在折叠屏产线,多相机抓边模型确保转轴区银浆的高精度印刷;未来趋势聚焦于多模态融合与自适应学习:结合深度学习预测材料形变,实现热膨胀实时补偿;通过强化学习优化匹配路径,如分级匹配算法将粗匹配时间缩短40%,精匹配精度提升至99.5%。随着算法与硬件的协同进化,机器视觉对位技术将持续推动精密制造向“零缺陷”目标迈进。
猜你喜欢
- 2025-07-23 高效完成质量把控,深度学习算法赋能机器视觉监测产品制造流水线
- 2025-07-23 高反光工件检测,机器视觉如何让0.01mm缺陷无所遁形
- 2025-07-23 美军轰炸伊朗核设施背后的光学制胜术
- 2025-07-23 什么是光学畸变?(什么是光学畸变的概念)
- 2025-07-23 光学制造过程建模(光学模型制作)
- 2025-07-23 麻省理工学院的光学 AI 芯片可能以光速彻底改变 6G
- 2025-07-23 【闪光灯距离计算终极指南】告别曝光失误的5种实战算法
- 2025-07-23 实际约束条件下成像系统的初始结构的生成
- 2025-07-23 利亚德:虚拟动点积累了OptiTrack光学定位算法等多项核心算法技术
- 2025-07-23 新算法精准解码分子光学“指纹”(二维码解码器)
- 最近发表
- 标签列表
-
- newcoder (56)
- 字符串的长度是指 (45)
- drawcontours()参数说明 (60)
- unsignedshortint (59)
- postman并发请求 (47)
- python列表删除 (50)
- 左程云什么水平 (56)
- 编程题 (64)
- postgresql默认端口 (66)
- 数据库的概念模型独立于 (48)
- 产生系统死锁的原因可能是由于 (51)
- 数据库中只存放视图的 (62)
- 在vi中退出不保存的命令是 (53)
- 哪个命令可以将普通用户转换成超级用户 (49)
- noscript标签的作用 (48)
- 联合利华网申 (49)
- swagger和postman (46)
- 结构化程序设计主要强调 (53)
- 172.1 (57)
- apipostwebsocket (47)
- 唯品会后台 (61)
- 简历助手 (56)
- offshow (61)
- mysql数据库面试题 (57)
- fmt.println (52)