网站首页 > 文章精选 正文
简介: Hadoop的计算框架特性下的HIve有效的优化手段
作者:浪尖
原文链接
本文转载自公众号:Spark学习技巧
1.介绍
首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题?
- 数据量大不是问题,数据倾斜是个问题。
- jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长。原因是map reduce作业初始化的时间是比较长的。
- sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题。
- count(distinct ),在数据量大的情况下,效率较低,如果是多count(distinct )效率更低,因为count(distinct)是按group by 字段分组,按distinct字段排序,一般这种分布方式是很倾斜的。举个例子:比如男uv,女uv,像淘宝一天30亿的pv,如果按性别分组,分配2个reduce,每个reduce处理15亿数据。
面对这些问题,我们能有哪些有效的优化手段呢?下面列出一些在工作有效可行的优化手段:
- 好的模型设计事半功倍。
- 解决数据倾斜问题。
- 减少job数。
- 设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160个reduce,那是相当的浪费,1个足够)。
- 了解数据分布,自己动手解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这是通用的算法优化,但算法优化有时不能适应特定业务背景,开发人员了解业务,了解数据,可以通过业务逻辑精确有效的解决数据倾斜问题。
- 数据量较大的情况下,慎用count(distinct),count(distinct)容易产生倾斜问题。
- 对小文件进行合并,是行至有效的提高调度效率的方法,假如所有的作业设置合理的文件数,对云梯的整体调度效率也会产生积极的正向影响。
- 优化时把握整体,单个作业最优不如整体最优。
而接下来,我们心中应该会有一些疑问,影响性能的根源是什么?
2.性能低下的根源
hive性能优化时,把HiveQL当做M/R程序来读,即从M/R的运行角度来考虑优化性能,从更底层思考如何优化运算性能,而不仅仅局限于逻辑代码的替换层面。
RAC(Real Application Cluster)真正应用集群就像一辆机动灵活的小货车,响应快;Hadoop就像吞吐量巨大的轮船,启动开销大,如果每次只做小数量的输入输出,利用率将会很低。所以用好Hadoop的首要任务是增大每次任务所搭载的数据量。
Hadoop的核心能力是parition和sort,因而这也是优化的根本。
观察Hadoop处理数据的过程,有几个显著的特征:
- 数据的大规模并不是负载重点,造成运行压力过大是因为运行数据的倾斜。
- jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联对此汇总,产生几十个jobs,将会需要30分钟以上的时间且大部分时间被用于作业分配,初始化和数据输出。M/R作业初始化的时间是比较耗时间资源的一个部分。
- 在使用SUM,COUNT,MAX,MIN等UDAF函数时,不怕数据倾斜问题,Hadoop在Map端的汇总合并优化过,使数据倾斜不成问题。
- COUNT(DISTINCT)在数据量大的情况下,效率较低,如果多COUNT(DISTINCT)效率更低,因为COUNT(DISTINCT)是按GROUP BY字段分组,按DISTINCT字段排序,一般这种分布式方式是很倾斜的;比如:男UV,女UV,淘宝一天30亿的PV,如果按性别分组,分配2个reduce,每个reduce处理15亿数据。
- 数据倾斜是导致效率大幅降低的主要原因,可以采用多一次 Map/Reduce 的方法, 避免倾斜。
最后得出的结论是:避实就虚,用 job 数的增加,输入量的增加,占用更多存储空间,充分利用空闲 CPU 等各种方法,分解数据倾斜造成的负担。
文章进行了部分删减,完整优化手段请点击下方[了解更多]
关键字:SQL 分布式计算 负载均衡 算法 Oracle Hadoop 关系型数据库 调度 HIVE Spark
- 上一篇: flink sql left join数据倾斜问题解决
- 下一篇: 数仓/数开面试题真题总结(二)
猜你喜欢
- 2025-03-07 阿里云云原生一体化数仓—数据治理新能力解读
- 2025-03-07 Apache Hive分区:定义、实现方式、优劣势分析、分区管理实践
- 2025-03-07 Delta Lake在Soul的应用实践
- 2025-03-07 大数据开发工程师面试主要面试内容
- 2025-03-07 Sqoop高频面试题知识点总结
- 2025-03-07 大数据技术之Hive
- 2025-03-07 Hive最全总结,学习与面试,收藏这一篇就够了!
- 2025-03-07 Hive 迁移参考方案及测试(上)
- 2025-03-07 2021年超全超详细的最新大数据开发面试题
- 2025-03-07 【大数据】Hive 小文件治理和 HDFS 数据平衡讲解
- 最近发表
-
- 100%开源免费的低代码/可视化数据分析、数据展示平台
- Spring Boot跨域问题终极解决方案:3种方法根治CORS报错
- 永久免费内网穿透很简单,一看就明白
- Odoo 用户菜单架构解析及创建和管理实战
- 关于编码的那些事 - URL 编码(编码url是什么意思)
- 20 个让人惊叹的 JavaScript 单行代码技巧,效率瞬间提升
- 如何使用java.net.URLConnection发起和处理HTTP请求
- 崩溃!代码总掉链子?6 个 JavaScript 技巧助你稳操胜券
- 抓狂!代码总出错?5 个 JavaScript 技巧助你逆风翻盘
- 前端性能拉胯?这 8 个 JavaScript 技巧让你的代码飞起来!
- 标签列表
-
- newcoder (56)
- 字符串的长度是指 (45)
- drawcontours()参数说明 (60)
- unsignedshortint (59)
- postman并发请求 (47)
- python列表删除 (50)
- 左程云什么水平 (56)
- 计算机网络的拓扑结构是指() (45)
- 稳压管的稳压区是工作在什么区 (45)
- 编程题 (64)
- postgresql默认端口 (66)
- 数据库的概念模型独立于 (48)
- 产生系统死锁的原因可能是由于 (51)
- 数据库中只存放视图的 (62)
- 在vi中退出不保存的命令是 (53)
- 哪个命令可以将普通用户转换成超级用户 (49)
- noscript标签的作用 (48)
- 联合利华网申 (49)
- swagger和postman (46)
- 结构化程序设计主要强调 (53)
- 172.1 (57)
- apipostwebsocket (47)
- 唯品会后台 (61)
- 简历助手 (56)
- offshow (61)