网站首页 > 文章精选 正文
萧箫 发自 凹非寺
量子位 | 公众号 QbitAI
还在苦恼怎么给优化器调整更好的参数吗?
现在,谷歌大脑搞出了一个新的优化器VeLO,无需手动调整任何超参数,直接用就完事了。
与其他人工设计的如Adam、AdaGrad等算法不同,VeLO完全基于AI构造,能够很好地适应各种不同的任务。
当然,效果也更好。论文作者之一Lucas Beyer将VeLO与其他“重度”调参的优化器进行了对比,性能不相上下:
有网友看到了一丝优化器进步的曙光:
在Adam之后出现了不少优化器,却都表现得非常失败。这个优化器或许确实能表现更好。
所以,这个基于AI的优化器是如何打造的?
VeLO究竟是怎么打造的?
在训练神经网络的过程中,优化器(optimizer)是必不可少的一部分。
但AI模型应用都这么广泛了,训练AI模型用的优化器却仍然是人工设计的,听起来多少有点不合理。
于是谷歌大脑的研究人员灵机一动:为何不用AI来做一个优化器呢?
设计上,优化器的原理基于元学习的思路,即从相关任务上学习经验,来帮助学习目标任务。
相比迁移学习,元学习更强调获取元知识,它是一类任务上的通用知识,可以被泛化到更多任务上去。
基于这一思想,VeLO也会吸收梯度并自动输出参数更新,无需任何超参数调优,并自适应需要优化的各种任务。
架构上,AI优化器整体由LSTM(长短期记忆网络)和超网络MLP(多层感知机)构成。
其中每个LSTM负责设置多个MLP的参数,各个LSTM之间则通过全局上下文信息进行相互协作。
训练上,AI优化器采用元训练的方式,以参数值和梯度作为输入,输出需要更新的参数。
经过4000个TPU月(一块TPU运行4000个月的计算量)的训练,集各种优化任务之所长后,VeLO终于横空出世。
比人工调参优化器效果更好
结果表明,VeLO在83个任务上的加速效果超过了一系列当前已有的优化器。
其中y轴是相比Adam加速的倍率,x轴是任务的比例。
结果显示,VeLO不仅比无需调整超参数的优化器效果更好,甚至比仔细调整过超参数的一些优化器效果还好:
与“经典老大哥”Adam相比,VeLO在所有任务上训练加速都更快,其中50%以上的任务比调整学习率的Adam快4倍以上,14%以上的任务中,VeLO学习率甚至快上16倍。
而在6类学习任务(数据集+对应模型)的优化效果上,VeLO在其中5类任务上表现效果都与Adam相当甚至更好:
值得一提的是,这次VeLO也被部署在JAX中,看来谷歌是真的很大力推广这个新框架了。
巴特,也有网友认为耗费4000个TPU月来训练VeLO,计算量成本过大:
虽然这个进展很重要,但它甚至都快赶上GPT-3的训练量了。
目前VeLO已经开源,感兴趣的小伙伴们可以去试试这个新的AI优化器。
One More Thing
前段时间,一位哈佛博士生提了个有意思的想法,得到不少人赞同:
更多论文的作者们也应该像演职员表一样,公开自己在论文中的工作内容。
Kareem Carr是生物统计学领域的博士生,作者贡献在生物论文中比较常见,不过之前在AI论文中见得不多。
现在,这篇谷歌大脑论文的作者们也这样做了,谁写的论文、谁搭建的框架一目了然:
不知道以后会不会成为机器学习圈的新风气(手动狗头)。
GitHub地址:
https://github.com/google/learned_optimization/tree/main/learned_optimization/research/general_lopt
论文地址:
https://arxiv.org/abs/2211.09760
参考链接:
[1]https://twitter.com/jmes_harrison/status/1593422054971174912
[2]https://medium.com/huggingface/from-zero-to-research-an-introduction-to-meta-learning-8e16e677f78a#afeb
[3]https://mp.weixin.qq.com/s/QLzdW6CMkcXWQbGjtOBNwg
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
猜你喜欢
- 2025-05-28 如何提高PyTorch“炼丹”速度?这位小哥总结了17种方法
- 2025-05-28 显存告急?微调资源优化的三大法宝
- 2025-05-28 大模型训练成本降低近一半!新加坡国立大学最新优化器已投入使用
- 2025-05-28 Pytorch 入门-day13: 调试与可视化
- 2025-05-28 基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
- 2025-05-28 神经网络训练全解析:从理论到实战的开发者指南及超参数优化法则
- 2025-05-28 BattProDeep——深度学习赋能电池老化概率精准预测
- 2025-05-28 神经辐射场(NeRF)实战指南:基于PyTorch的端到端实现
- 2025-05-28 Pytorch学习-day8: 损失函数与优化器
- 2025-05-28 Pytorch入门-Day 14:实践与优化
- 最近发表
-
- 如何提高PyTorch“炼丹”速度?这位小哥总结了17种方法
- 显存告急?微调资源优化的三大法宝
- 大模型训练成本降低近一半!新加坡国立大学最新优化器已投入使用
- Pytorch 入门-day13: 调试与可视化
- 基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
- 神经网络训练全解析:从理论到实战的开发者指南及超参数优化法则
- BattProDeep——深度学习赋能电池老化概率精准预测
- 让AI自己调整超参数,谷歌大脑新优化器火了,自适应多种不同任务
- 神经辐射场(NeRF)实战指南:基于PyTorch的端到端实现
- Pytorch学习-day8: 损失函数与优化器
- 标签列表
-
- newcoder (56)
- 字符串的长度是指 (45)
- drawcontours()参数说明 (60)
- unsignedshortint (59)
- postman并发请求 (47)
- python列表删除 (50)
- 左程云什么水平 (56)
- 计算机网络的拓扑结构是指() (45)
- 编程题 (64)
- postgresql默认端口 (66)
- 数据库的概念模型独立于 (48)
- 产生系统死锁的原因可能是由于 (51)
- 数据库中只存放视图的 (62)
- 在vi中退出不保存的命令是 (53)
- 哪个命令可以将普通用户转换成超级用户 (49)
- noscript标签的作用 (48)
- 联合利华网申 (49)
- swagger和postman (46)
- 结构化程序设计主要强调 (53)
- 172.1 (57)
- apipostwebsocket (47)
- 唯品会后台 (61)
- 简历助手 (56)
- offshow (61)
- mysql数据库面试题 (57)